Thursday, October 20, 2016

The Matura national Park Participatory 3D Model (P3DM) – A Participant’s Experience

As we continue to feature the Matura Participatory 3D Model building exercise, it is important to understand the merit of this initiative to community members. Ms. Evana Douglas hails from the Matelot to Matura region, and represents the Sky-Eco Organisation. Evana participated in this project and shares her knowledge gained from this experience.

Having participated in this P3DM model building exercise, how would you describe your experience overall?
In a single word, the exercise was informative. Community projects do not normally take on a participatory approach and are often specific to a particular community (e.g. Toco, Grande Riviere, Matura, etc.).
Knowledge holders contributing data to the 3D model

This particular exercise incorporated all communities from Matura to Matelot and afforded the opportunity for networking with technocrats and neighbouring communities. It was also fun and euphoric working with different people from different backgrounds towards a single goal.

What are some of the key lessons learnt from being part of this P3DM exercise?
There were many lessons learnt during this exercise, the most important in my opinion, is the awareness and appreciation for the Matura to Matelot environment (not just the ESA but the surrounding neighbourhood as well) that resulted from being a part of the development of the model. Personally, I have also developed a sense of ownership for the natural resources of the region and the model itself, as I was able to identify key areas on the model that I am both familiar with and dependent on. Some areas and activities were even eye opening.

What value do you see coming out of this model?
The model can be used in almost all areas of development. Because the area has a mixture of coastal and terrestrial culture, the impacts of this interface are critical and can be illustrated with the model. As such, it is a tool for all levels of education and expertise and should be made mandatory in national spatial development initiatives; for example the proposed Highway and Seaport infrastructure. Of course there is significant room for improvement as the Matura National Park (MNP) in isolation doesn't actually reflect the implications to the communities and other areas that are not included in the MNP. As a result, there is potential for incorporating the entire coastal zone (from ridge to reef) to reflect the extent of area, its development potential and the impacts on all areas of the watershed. There is also potential for economic and cultural development using the model as residents are able to identify places of interest and potential for sustainable activities.

Do you think other communities or protected areas such as Matura should use the P3DM tool?
Application in other areas; whether protected or not, should be made mandatory. Modeling is the basis for understanding the environment and impacts of human based activities on the environment; to which our livelihoods depend. In most cases, various forms of 2D modelling are applied using complex programs like GIS and RS. These often lack information or are just too complex for residents; especially those from rural communities. The 3D model however is a literal miniature replication of the area and can be understood at all levels of education and expertise; making it quite an effective to in spatial development and management of our natural resources (not just the MNP).

SourceSunday Guardian, 28 august 2016

Tuesday, October 18, 2016

Drone governance: study of policies, laws and regulations governing the use of unmanned aerial vehicles (UAVs) in ACP countries

The use of UAVs or drones in the management of crops, livestock, fisheries, forests and other natural resource-based activities represents a new technological frontier and opens up a range of exciting opportunities. However, the use of UAVs is a recent phenomenon and interested users and national civil aviation authorities are facing challenges linked to their use within their skies. To realise the full potential of the technology while ensuring the safety and privacy of citizens, two things are necessary: enabling regulatory regimes and increasing awareness of the rules and regulations surrounding civil use of UAVs.

Although the European Commission recently supported the establishment of an online repository of information concerning regulations issued by all European countries, there is no similar comprehensive database on existing and forthcoming policies, laws and regulations governing the use of UAVs in ACP countries. The Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA), an international organisation funded mainly by the European Union and operating in 79 African, Caribbean and Pacific (ACP) countries wishes to facilitate the responsible use of UAVs and related software applications to improve the effective management of crops, fishing grounds and other resource-based activities.

To that end, this study assessed the existence or absence of policies, rules and regulations governing the use of UAVs in all 79 ACP countries. The results are quite telling: as of April 2016, 73% of ACP countries did not have any rules or regulations in place; 19% had some regulations in place; and 8% were in the process of formulating them. CTA hopes that this database will help to increase awareness of the rules and regulations surrounding UAV use, promote their responsible use and help to fully realise their potential in the management of crops, fisheries and other resources.

The report is available as a download on CTA's online publications' portal.

Data gathered in the course of the study have been published on a site hosted by The Swiss Foundation for Mine Action (FSD) and is accessible on this wiki which allows online collaboration.

Thursday, September 15, 2016

The Power of Maps - Bringing the Third Dimension to the Negotiation Table

Participatory 3D modelling (P3DM) is one of the most remarkable innovations of the late 20th century. It is remarkable because it brings together three elements that many would consider incompatible – local spatial and natural resource knowledge, geographic information systems (GIS) and physical modelling.

As the inspiring accounts in this volume show, it can do this in many environments, of varied sizes and involving many people, sometimes more than a hundred and inclusively, both young and old. When well prepared and facilitated, as so amply illustrated here, the process gives rise to a progressive creative synergy. This empowers communities, by enabling them to share and express in lasting visual form the rich detail of what they know and by providing them with a tool for analysis, decision-making, advocacy, action and monitoring.

This volume bears testimony to the multiple uses and values of P3DM. In the examples described, the uses to which communities have put their models include natural resource planning and management; land and ocean rehabilitation; mapping their ancestral territories and establishing their rights; planning for conservation; disaster risk reduction and adaptation to climate change and variability; educating children in schools about their history and cultural heritage; bringing together community members with differences; and negotiating with officials and influencing policy.

Foreword by Robert Chambers, IDS

Download this publication
in English
in French

Wednesday, September 14, 2016

Participatory 3D model by indigenous community in Nicaragua

This 3D model has been developed with assistance provided by the Centro para la Autonomía y Desarollo de los Pueblos Indígenas (CADPI) by the indigenous community of Miguel Bikan in Nicaragua and has been used for monitoring, reporting and verification. In completing and using the model, the community has a community-based monitoring information system.

Wednesday, September 07, 2016

Sharing lessons with the world - Tonga’s P3DM success story

HONOLULU, 5 September 2016. Tonga was represented on the world stage at the World Conservation Congress in Hawaii this week. The island kingdom successfully carried out Participatory Three-Dimensional Modelling (P3DM) for the Vava’u island group this year as part of the Integrated Island Biodiversity Project.

At a special event to launch the Power of Maps book at the World Conservation Congress, Ms. Ana Fekau, the IIB Project Coordinator of Tonga shared their story of the P3DM process and how it helped to strengthen community engagement in planning for the conservation of biodiversity in Tonga.

“The process in developing the first P3DM in the Kingdom of Tonga brought communities together, the elderlies, youth and school children. The P3DM was not just a tool for planning purposes, but was also a tool to empower communities and to hear their voices through the stories they were sharing during the process,” said Ms. Fekau.

Hindou Ibrahim Omarou opening the session on the book lauch
(Image credit: Mikaela Jade)
The IIB Project supports an integrated ecosystem approach to the biodiversity conservation management at the local level in the Cook Islands, Nauru, Tonga and Tuvalu. The four year project finishes at the end of this year.

“The World Conservation Congress has provided an excellent platform to showcase and share Tonga’s P3DM work that was successfully completed under this project, and the expansion of this work to Nauru and the Cook Islands,” said Ms Easter Galuvao, Biodiversity Adviser at the Secretariat of the Pacific Regional Environment (SPREP).

Ms Ana FeKau presenting at the book launch
(Image credit: Nigel Crawhall)
During her presentation, Ms Fekau explained the 3D participatory process, the challenges faced and valuable lessons resulting from Tonga’s P3DM, including her role in the successful replication of P3DM in the main island of Tongatapu.

I wish to express sincere thanks and acknowledge the GEFPAS IIB Project and SPREP for facilitating the P3DM for Tonga, the Samoa Ministry of Natural Resources and Environment for providing their valuable technical expertise and to the Technical Centre for Agricultural and Rurel Cooperation ACP-EU (CTA) for their support,” said Ms Fekau during her presentation.

The presentation was given at a side event at the IUCN World Conservation Congress (WCC) currently underway in Honolulu, Hawaii is attended by over 9,000 participants from around the world and will wrap up on the 10 September.

The GEFPAS Integrated Island Biodiversity (IIB) Project is funded by the Global Environment Facility (GEF), implemented through the United Nations Environment Programme (UNDP) and executed by SPREP in the Cook Islands, Nauru, Tonga and Tuvalu.

Note: Ms Ana Fekau works at the Ministry of Meteorology, Energy, Information, Disaster Management, Environment, Climate Change and  Communications (MEIDECC), in Nuku`alofa, Tonga

Sunday, September 04, 2016

A Shared Perspective for (Public) Participatory Geographic Information Systems (P/PGIS) and Volunteered Geographic Information VGI - Published on The Cartographic Journal on 2 September 2016

The paper A Shared Perspective for PGIS and VGI reviews persistent principles of participation processes. On the basis of a review of recent interrogations of the (Public) Participatory Geographic Information Systems (P)PGIS and Volunteered Geographic Information (VGI) approaches, a summary of five prevailing principles in participatory spatial information handling is presented.

We investigate these five principles that are common to (P)PGIS and VGI on the basis of a framework of two dimensions that govern the participatory use of spatial information from the perspective of people and society.

This framework is presented as a shared perspective of (P)PGIS and VGI and illustrates that, although both share many of these same principles, the ways in which these principles are approached are highly diverse.

The paper ends with a future outlook in which we discuss the inter-connected memes of potential technological futures, the signification of localness in ‘local spatial knowledge’, and the ramifications of ethical tenets by which PGIS and VGI can strengthen each other as two sides of the same coin.

Citation: Jeroen Verplanke, Michael K. McCall, Claudia Uberhuaga, Giacomo
Rambaldi & Muki Haklay (2016): A Shared Perspective for PGIS and VGI, The Cartographic
Journal, DOI: 10.1080/00087041.2016.1227552

To link to this article:

Friday, September 02, 2016

Des cartes qui changent tout : comment des maquettes en 3D aident les communautés rurales à faire entendre leur voix

La construction de véritables maquettes en trois dimensions dans les villages contribue à réunir le savoir traditionnel et les connaissances scientifiques modernes pour relever des défis allant de la dégradation des sols à la planification de l’utilisation des terres, en passant par la gestion des forêts et le changement climatique. La technique, connue sous le nom de «modélisation participative en trois dimensions», permet aux communautés marginalisées de présenter leur territoire – ainsi que les connaissances approfondies qu’ils en ont – sous une forme visuelle. Ce processus leur offre ainsi l’occasion de protéger de précieuses ressources naturelles des menaces extérieures et de les préserver pour les générations futures. Certaines des expériences sur le terrain sont réunies dans un nouvel ouvrage. Le pouvoir des cartes - Quand la 3D s'invite à la table des négociations est publié par le Centre technique de coopération agricole et rurale (CTA), qui est en première ligne de la promotion de cette pratique dans les pays d’Afrique, des Caraïbes et du Pacifique (ACP).

Développée au début des années 1990 en Asie du Sud-Est, la modélisation participative en trois dimensions (MP3D) gagne rapidement du terrain dans d’autres régions du monde en développement. Les modèles participatifs en 3D, fabriqués en carton et illustrés à l’aide de peintures de couleur, de punaises et de fil, représentent l’occupation des terres, par exemple les zones cultivées, les rivières et les forêts, ainsi que d’autres caractéristiques, comme les ressources côtières et la profondeur des mers. Les maquettes montrent aussi les connaissances traditionnelles, comme les droits fonciers ancestraux et les lieux sacrés. Ces éléments sont généralement fournis par les aînés de la communauté, tandis que les plus jeunes construisent la carte elle-même. Le résultat est une maquette en relief, indépendante, qui constitue un outil efficace d’analyse, de prise de décision, de plaidoyer, d’action et de suivi.

« Le savoir sur les ressources terrestres, forestières et aquatiques accumulé au fil du temps et transmis de génération en génération représente un atout majeur pour les populations rurales », affirme le Directeur du CTA, Michael Hailu. « La possibilité de compiler et de géo référencer des connaissances locales et de les représenter sous la forme de cartes en trois dimensions représente une occasion unique pour les populations locales de faire entendre leur voix lors des décisions en matière de gestion durable de leurs ressources. »

Souvent, le processus de modélisation participative en trois dimensions favorise lui-même l’autonomie. Il rapproche des communautés et des générations et les aide à visualiser l’étendue de leurs ressources et la façon dont le changement climatique et d’autres menaces, comme l’extraction minière et la déforestation, peuvent les impacter. Une fois terminée, la maquette reste dans la communauté.

Des études de cas menées en Éthiopie, aux Fidji et à Madagascar montrent comment la MP3D a permis le développement de plans de gestion des ressources naturelles par la communauté. D’autres exemples décrits dans la publication révèlent que cette technique permet aux communautés rurales marginalisées de faire entendre leur voix. En République démocratique du Congo, la communauté pygmée Bambuti-Batwa s’est servie d’un exercice de MP3D pour négocier sur ce qu’ils considèrent comme une injustice : leur expulsion du territoire qu’ils occupent depuis des générations.

La cartographie en trois dimensions a aussi permis à une tribu de chasseurs-cueilleurs au Kenya, les Ogiek, de documenter ses droits territoriaux ancestraux et systèmes de connaissances traditionnels. Tandis qu’à Tobago, une île des Caraïbes qui a subi une série de phénomènes climatologiques extrêmes ces dernières années, la MP3D a servi à orienter les stratégies communautaires de réduction des risques de catastrophes naturelles.

La coopération Sud-Sud contribue à faire connaître la pratique de la modélisation participative en trois dimensions et le CTA est étroitement impliqué dans les efforts de partage des activités de formation et de facilitation entre les îles des Caraïbes et du Pacifique et une série de pays africains.

La MP3D peut avoir d’autres retombées positives, notamment en offrant de nouvelles compétences et une confiance en soi accrue aux individus impliqués dans le processus et en dégageant des financements pour la mise en œuvre d’activités dans les communautés. Citons la Grenade à titre d’exemple où une maquette participative en 3D a eu un impact direct sur la communauté qui l’a créée en mobilisant des financements des bailleurs de fonds pour l'adaptation au changement climatique sur une partie du littoral gravement endommagée par un ouragan.

« La modélisation participative en 3D, le processus au cœur de cette publication, s’est révélée efficace pour récolter chez diverses personnes une quantité substantielle de ce que l’on qualifie de connaissances tacites et pour assembler des points de vue individuels dans une représentation partagée, visible et tangible des connaissances collégiales », déclare Giacomo Rambaldi, Coordonnateur de Programme Sénior, en charge de la participation du CTA aux processus de MP3D. «L’ajout d’un emplacement géographique à toute information ou donnée accroît sa pertinence. La MP3D permet donc à ceux qui détiennent les connaissances de visualiser et de géo référencer leur savoir traditionnel et de nouer un dialogue d’égal à égal avec des étrangers. »

Vous pouvez commander un exemplaire imprimé et télécharger le livre.

Powerful maps: how building 3D models is helping rural communities to make their voices heard

A process of building three-dimensional physical models in a village setting is helping to bring together traditional and modern scientific knowledge to tackle challenges ranging from soil degradation to land use planning, and from forest management to climate change. The technique, known as Participatory 3-dimensional modelling (P3DM) enables marginalised communities to present their territory – together with their own valuable knowledge – in a visual form, offering them the opportunity to protect precious natural resources from outside threats and preserve them for future generations. Some of the field experiences have been published in a new report. The Power of Maps: Bringing the third dimension to the negotiation table is published by the Technical Centre for Agricultural and Rural Cooperation (CTA), which has been in the forefront of promoting the practice across African, Caribbean and Pacific (ACP) countries.

Developed in the early 1990s in Southeast Asia, P3DM is rapidly gaining ground in other parts of the developing world. Participatory 3D models, made out of cardboard and illustrated with coloured paints, pushpins and yarn, portray land cover, such as farmland, rivers and forests, as well as other features, including coastal resources and sea depth. Uniquely, they also depict traditional knowledge, such as ancestral land rights and sacred places. These features are generally supplied by elders in the community, while younger members build the map itself. The result is a free standing relief model which provides tangible evidence of local knowledge, serving as an effective tool for analysis, decision-making, advocacy, action and monitoring.

“Knowledge built up over time and passed from generation to generation represents a unique asset for rural communities when it comes to their land, forest and aquatic resources,” said CTA Director Michael Hailu. “The ability to collate and geo-reference local knowledge and represent it in the form of 3-dimensional maps offers a unique opportunity for local communities to have a voice in decisions on how to sustainably manage their resources.

Often, the process of participatory 3-dimensional modelling is in itself empowering, bringing communities and generations together and helping them to visualise the extent of their resources, and how climate change and other threats, such as mining and deforestation, may be affecting them. Once completed, the physical model remains with the community.

Case studies presented from Ethiopia, Fiji and Madagascar show how P3DM has led to the development of community-driven natural resource management plans. Other examples of P3DM initiatives described in the book demonstrate how the technique can give marginalised rural people a voice to make their case heard. In the Democratic Republic of Congo, the Bambuti-Batwa pygmy community used a P3DM exercise to drive talks on what they claim is the injustice of being evicted from the territory they had inhabited for generations.

Three-dimensional mapping has helped the Kenyan hunter-gatherer Ogiek tribe to document its ancestral land rights and knowledge systems. Meanwhile, In Tobago, a Caribbean island that has suffered a series of extreme climate events in recent years, P3DM has been used to guide community-driven disaster risk reduction strategies.

South-South cooperation is helping to make the practice of participatory 3-dimensional modelling become better known and CTA has been closely involved in efforts to share training and facilitation between Caribbean and Pacific Islands and a range of African countries.

Experiences of P3DM can generate other benefits, such as offering new skills and self-confidence to individuals engaged in the process and funding for communities to implement activities. A case in point is Grenada, where a participatory 3D model had a direct impact on the community that created it, by mobilising donor funding for climate change adaptation on a stretch of the coastline badly affected by hurricane damage.

Participatory 3D modelling, the process documented in this book, has proved to be successful in eliciting substantial amounts of what is termed as tacit knowledge from individuals, to collate individual world views into a shared, visible and tangible representation of collegial knowledge,” said Senior Programme Coordinator Giacomo Rambaldi, who has led CTA’s involvement in P3DM. Adding ‘location’ to any piece of information or datum makes it even more relevant. Hence P3DM enables knowledge holders to visualise and geo-reference their traditional knowledge and to engage outsiders in a peer-to-peer dialogue.”

You can order a hard copy and download the book.

Making Maps, Third Edition: A Visual Guide to Map Design for GIS

Lauded for its accessibility and beautiful design, this text has given thousands of students and professionals the tools to create effective, compelling maps.

Using a wealth of illustrations--with 74 in full color--to elucidate each concisely presented point, the revised and updated third edition of Making Maps: A Visual Guide to Map Design for GIS continues to emphasize how design choices relate to the reasons for making a map and its intended purpose.

All components of map making are covered: titles, labels, legends, visual hierarchy, font selection, how to turn phenomena into visual data, data organization, symbolization, and more.

Innovative pedagogical features include a short graphic novella, good design/poor design map examples, end-of-chapter suggestions for further reading, and an annotated map examplar that runs throughout the book.

by John Krygier PhD (Author), Denis Wood PhD (Author)

Paperback: 293 pages
Publisher: The Guilford Press; 3 edition (August 2, 2016)
Language: English
ISBN-10: 1462509983
ISBN-13: 978-146250998